Moving the Plasmon of LaB6 from IR to Near-IR via Eu-Doping

نویسندگان

  • Tracy M Mattox
  • D Keith Coffman
  • Inwhan Roh
  • Christopher Sims
  • Jeffrey J Urban
چکیده

Lanthanum hexaboride (LaB₆) has become a material of intense interest in recent years due to its low work function, thermal stability and intriguing optical properties. LaB₆ is also a semiconductor plasmonic material with the ability to support strong plasmon modes. Some of these modes uniquely stretch into the infrared, allowing the material to absorb around 1000 nm, which is of great interest to the window industry. It is well known that the plasmon of LaB₆ can be tuned by controlling particle size and shape. In this work, we explore the options available to further tune the optical properties by describing how metal vacancies and Eu doping concentrations are additional knobs for tuning the absorbance from the near-IR to far-IR in La1-xEuxB₆ (x = 0, 0.2, 0.5, 0.8, and 1.0). We also report that there is a direct correlation between Eu concentration and metal vacancies within the Eu1-xLaxB₆.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of the Influence of Percentage of Copper on the Structural and Optical Properties of Au-Cu Nanoparticle

Here we present our experimental results in synthesizing Au-Cu nano-particles with tunable localized surface plasmon resonance frequency through wet-chemical at temperature room. The reaction is performed in the presence of ascorbic acid as a reducing agent and polyvinyl pyrrolidone as capping agent via four different procedures: (1) mixture of 90% HAuCl4 and 10% CuSO4.5H2O precursors, (2) mixt...

متن کامل

Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires.

Chemically synthesized metallic nanostructures can exhibit a strong local optical field enhancement associated with their high degree of crystallinity and well-defined geometry-dependent surface plasmon resonances. The extension of the plasmon modes into the mid-IR spectral range (3-30 microm) is shown for micrometer-sized nanowires with high aspect ratios available in the form of pentagonally ...

متن کامل

Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.

Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped...

متن کامل

GeS2–In2S3–CsI Chalcogenide Glasses Doped with Rare Earth Ions for Near- and Mid-IR Luminescence

Chalcogenide glass has been considered as a promising host for the potential laser gain and amplifier media operating in near- and mid-IR spectral region. In this work, the IR luminescence spectra of rare earth ions (Tm3+, Er3+, and Dy3+) doped 65GeS2-25In2S3-10CsI chalcogenide glasses were measured under the excitation of an 808 nm laser diode. To the best of our knowledge, it firstly provides...

متن کامل

Combined Two-Photon Excitation and d!f Energy Transfer in a Water-Soluble Ir/Eu Dyad: Two Luminescence Components from One Molecule for Cellular Imaging

The first example of cell imaging using two independent emission components from a dinuclear d/f complex is reported. A water-stable, cell-permeable Ir/ Eu dyad undergoes partial Ir!Eu energy transfer following two-photon excitation of the Ir unit at 780 nm. Excitation in the near-IR region generated simultaneously green Ir-based emission and red Eu-based emission from the same probe. The order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018